

CCC Annual Report

UIUC, August 19, 2015

Investigation of Flow Pattern, Surface Behavior, and Mold Slag Entrainment using an Oil-Water Model and CFD Model

UIUC: Seong-Mook Cho, Brian G. Thomas POSTECH: Seon-Hyo Kim, Hyoung-Jun Lee

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Research Background: Slag Entrainment Mechanisms

- 1. Surface level fluctuation^[2-4]
- 2. Meniscus freezing, hook formation
- 3. Vortex Formation^[5,6]
- 4. Shear layer instability^[7-9]
- 5. Upward flow^[10]
- 6. Argon bubble interactions/slag foaming
- 7. Slag crawling^[11]
- 8. Surface wave instability
- 9. Surface balding

<Slag Entrainment Mechanisms^[1]>

- Primary mechanism of slag entrainment depends on casting conditions, but likely involve mechanisms 1,8 (mainly surface) and 3, 4, 5, 7, 9 (mainly interior) which all have both quasi-steady and transient aspects.
- Investigate surface flow and entrainment phenomena using water model experiments, plant measurements and advanced computational models to quantify slag entrainment in a continuous slab casting
- Computational model is available to evaluate slag entrainment criteria

Research Scope

Objectives:

- Understand flow patterns, surface behavior, related to slag entrainment in mold of continuous slab caster.
- Develop computational models of "liquid slag/molten steel interface motion and slag entrainment at mold surface".
- Apply the validated computational model with water model experiments, to get insight into slag entrainment mechanism in mold of continuous slab casting.

Methodologies:

University of Illinois at Urbana-Champaign

- **1/3 scale water model experiments** to understand mold flow pattern and evaluate slag entrainment mechanisms.
- Computational modeling to evaluate 3D-Volume Of Fluid (VOF) model to predict mold flow pattern for 1/3 scale water model of conventional slab caster with clog nozzle and validate the model prediction with water model experiments.

Metals Processing Simulation Lab

0	
Dei	
Casting	
Consortium	

Review of 1/3 Scale Water Model Measurements

· 3/30

Seong-Mook Cho

1/3 Scale Water Model

Caster Dimensions and Process Conditions

Caster dimensions				
	1/3 scale water model	Real caster (normal case)		
Nozzle bore diameter (inner/outer)	25 mm/46 mm	75 mm/138 mm		
Nozzle bottom well depth	6.3 mm	19 mm		
Nozzle port area	non-clogged port: 23.3 mm x 26.7 mm clogged port: 13.5 mm x 15.4 mm	69.9 mm x 80.1 mm		
Nozzle port angle	35 down degree at both top and bottom	35 down degree at both top and bottom		
Mold thickness	77 mm	231 mm		
Mold width	500 mm	1500 mm		
	Process conditions			
Volume flow rate (Water or Steel)	34.4 LPM	536.2 LPM (3.76 T/min)		
Casting speed	U _{c,W} : 0.89 m/min	U _{c, R} : 1.54 m/min		
Submerged depth of nozzle	60 mm	180 mm		

 Flow similarity between 1/3 scale water model (Case W) and real caster (Case R)
 ➡ Froude number (ratio of inertia force to gravitational force): (u/√gL)_w = (u/√gL)_R Casting speed u_{c,W} for 1/3 scale water model:u_{c,W} = u_{c,R}√L_w/L_R

Details of Nozzle Dimensions

Left p	Right port	
No-clog	Clog (67 % clog)	Both cases
23.3mm 26.7mm	13.5mm 13.5mm	23.3mm 26.7mm

Dimer	nsion of nozzle port	No- clog	Clog
	Width (mm)	23.3	23.3
Right	Height (mm)	26.7	26.7
	Width (mm)	23.3	13.5
Left	Height (mm)	26.7	15.4
Ratio of ar	ea between left and right	1	0.33
Ratio of are	ea between two ports and nozzle bore	2.54	1.69
Po	rt angle (degree)	-35	-35

- To investigate effect of asymmetric mold flow on surface behavior and mold slag entrainment, two cases (No-clog nozzle and Clog nozzle) are compared.
- Clog nozzle has 67%-clog part in upper region of left port.

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

```
Seong-Mook Cho
```

· 7/30

Comparison of Properties between Oil/Water and Mold Flux/Steel System

	Water model		Real caster		
	Silicon oil	Water	Mold flux	Molten steel	
Temperature	2	5°C	1200 ~ 1400°C	1600°C	
Density	963.3 kg/m³	998.2 kg/m³	Bulk: 750 kg/m³, Liquid: ~3000 kg/m³	7020 kg/m³	
Density ratio	0.965 (0	Oil/Water)	0.427 (Liquid mold flux/	Molten steel)	
Dynamic viscosity	0.0963 kg/m·sec	0.0010 kg/m·sec	0.160 kg/m·sec (1400°C) 0.345 kg/m·sec (1300°C) 0.781 kg/m·sec (1200°C)	0.0067 kg/m·sec	
Dynamic viscosity ratio	96.3 (Oil/Water)		23.9 (Mold flux at 1400°C	C/Molten steel)	
Kinematic viscosity	0.0001 m²/sec 1.002 x 10 ⁻⁶ m²/sec		0.533 x 10 ⁻⁴ m²/sec (1400°C) 1.150 x 10 ⁻⁴ m²/sec (1300°C) 2.603 x 10 ⁻⁴ m²/sec (1200°C)	0.954 x 10 ⁻⁶ m²/sec	
Kinematic viscosity ratio	99.8 (Oil/Water)		55.9 (Mold flux at 1400°0	C/Molten steel)	
Surface tension	0.0209 N/m	0.0720 N/m	0.437 N/m	1.78 N/m	
Interfacial tension	0.0247 N/m		1.34 N/m		

- Higher density ratio, lower dynamic viscosity of upper layer, and lower interfacial tension produce more slag entrainments in silicon oil/water system than slag/steel system
- It is needed to understand entrainment phenomena in oil/water system and develop computational model for slag/steel system of real caster

Mold Surface Behaviors in Oil/Water System

<No-clog case>

<Clog case>

- No-clog case shows surface level fluctuations, max ~ 20mm (~ 200 % of oil thickness average (10mm)). On the other hand, clog case produces much more severe surface instability over ~ 60 mm (~ 600 % of oil thickness average), which makes oil reach jet flow from nozzle port.
- With clog nozzle, surface instability is high enough to drag oil finger deep into nozzle port flow, resulting in oil entrainment.

Slag Entrainment Phenomena

< Small entrainment > University of Illinois at Urbana-Champaign

- Abnormally fast surface flow induces interface instability between oil and water phase, dragging oil finger into water pool

- Entrained oil reaches nozzle port

- Jet flow takes oil bubbles deep into the mold

< Large entrainment > Metals Processing Simulation Lab

⁻ Entrained oil is "broken-up" into small sizes

Critical Surface Velocity for Entrainment: Shear Layer Instability

- Shear layer instability mechanism is most likely to occur in the surface region where surface velocity shows a maximum
- Kelvin-Helmholtz (K-H) instability^[7,8]:
- Funada-Joseph (F-J) instability^[9]:

$$\begin{split} \Delta V_{crit} &= \sqrt[4]{4g(\rho_{I} - \rho_{u})\Gamma_{ul}\left(\frac{1}{\rho_{u}} + \frac{1}{\rho_{I}}\right)^{2}} \\ \Delta V_{crit} &= \sqrt[4]{4g(\rho_{I} - \rho_{u})\Gamma_{ul}\left\{\frac{(\mu_{I} + \mu_{u})^{4}}{(\rho_{u}\mu_{I}^{2} + \rho_{I}\mu_{u}^{2})^{2}}\right\}} \end{split}$$

I: lower layer (water or molten steel) u: upper layer (oil or molten slag)

	ΔV_{crit}	Critical velocity difference between upper and lower layer (m/sec)				
	ρ	Density (Density (kg/m ³)			
	Γ _{ul}	Interfacia lower lay	Interfacial tension between upper and lower layer (N/m)			
	μ	Dynamic viscosity (kg/m·sec)				
	g	Gravity acceleration (m/sec ²)				
	ΔV _{crit} K-H F-J			F-J		
Γ	Oil/water		0.102 m/sec	0.072m/sec		
	Slag	/steel	0.30 m/sec	0.27 m/sec		
m^{-}	maller critical curface velocity					

<Entrainment by shear layer instability^[1]>

With employing slag viscosity, F-J predicts smaller critical surface velocity
University of Illinois at Urbana-Champaign
 Metals Processing Simulation Lab
 Seong-Mook Cho
 11/30

Critical Surface Velocity for Entrainment: Upward Flow

	V _{critical}
Oil/water (m/sec)	Critical: 0.10 m/sec
Slag/steel (m/sec)	Critical: 0.44 m/sec

Comparison of Critical Velocity for Entrainment between Predictions and Measurement (1/3 Scale Water Model) Eddy-current sensor measurement of critical velocity for entrainment: Computational Computational Computational

- Predicted critical surface velocity Measured critical velocity for entrainment is higher than predicted ones by the reported eqns for shear instability (K-H, F-J) and upward flow (H-C).
- Cho's and Hibbeler's simulation results well-match with the measured one, indicating excellent potential computational modeling for future work.
- Computational modeling work is needed to understand slag entrainment mechanism in

3D-VOF Model Test: LES coupled VOF Modeling of Surface Motion and Entrainment Phenomena (Modeling of Oil/Water System in 1/3 scale water model)

Governing Equations

•15/30

Seong-Mook Cho

Large Eddy Simulation (LES) coupled with Volume Of Fluid (VOF) for threephase (air/oil/water) flows

• VOF (Volume fraction of each phase):

 $\frac{\partial \alpha_{air}}{\partial t} + \nabla \cdot \left(\! \alpha_{air} \cdot \overrightarrow{u_{air}} \right) \! = \! 0 \quad \frac{\partial \alpha_{oil}}{\partial t} + \nabla \cdot \left(\! \alpha_{oil} \cdot \overrightarrow{u_{oil}} \right) \! = \! 0 \qquad \! \alpha_{water} = \! 1 - \alpha_{oil} - \alpha_{air}$ oil volume fraction water volume fraction air volume fraction

Metals Processing Simulation Lab

Continuity:

$$\frac{\partial \rho_{\text{mix}}}{\partial t} + \nabla \cdot \left(\rho_{\text{mix}} \vec{u} \right) = 0 \qquad \rho_{\text{mix}} = \alpha_{\text{water}} \rho_{\text{water}} + \alpha_{\text{oil}} \rho_{\text{oil}} + \alpha_{\text{air}} \rho_{\text{air}}$$

Momentum conservation:

$$\rho_{\text{mix}} \, \frac{\partial u}{\partial t} + \rho_{\text{mix}} u \cdot \nabla u = -\nabla p + \nabla \cdot \left[\mu_{\text{mix}} \left(\nabla u + \nabla^{\mathsf{T}} u \right) \right] + \rho_{\text{mix}} g + F_{\text{interface}}$$

```
University of Illinois at Urbana-Champaign
```

Domain and Mesh -0. -0.3 Hexahedral cells: -0.2 ~2.8 million **-0**. 0 7%-clogge port 0.6 × 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 -0'2 1. -0.1 <Mesh> <Domain> University or minors at orbania-Champaign Metals Processing Simulation Law Seong-Mook Cho 16/30

Boundary Conditions and Computation Details

Boundary conditions:

Inlet (tundish)	0.00149 m/s
Air/Oil interface and Oil/Water interface	interior
Top surface of air layer	0 shear stress
Stopper-rod walls, Nozzle walls, wide faces, and narrow faces	No slip

- Contact angle^[12-14] air/water/acrylic: 69.1° Air/oil/acrylic: 26.6° Oil/water/acrylic: 76.1°
- Interfacial tension

Oil / water interfacial tension: 0.247 N/m Air / oil interfacial tension: 0.209 N/m

- Initial input values:
 - Velocity field of steady-state single-phase (water) flow using standard k- ECFD model
 - 100% air fraction in initial air layer, 100% oil fraction in initial oil layer,

100% water fraction in initial water pool

Time step: 0.001 sec

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Seong-Mook Cho	•17/30

Planes and Points in the Domain

Flow Pattern in Clog Nozzle and Mold

<Asymmetric mold flow pattern at Plane 1>

- Asymmetric flow pattern is induced between left/right NF and between IR/OR in the mold, by nozzle clogging (unbalanced double-roll pattern).
- With clogged nozzle, surface flow from right side cross the surface and suppress the uprising flow from left NF

Oil Volume Fraction at Plane 1,4,5

Oil layer at right side (non-clogged nozzle port side) becomes thinner with higher

surface flow Oil layer on center-middle plane is thinner than other regions (near IR, OR) due higher surface velocity

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Seong-Mook Cho	•23/30

- Transient asymmetric surface flow between IR and OR produces non-uniform oil layer thickness
- Oil layer thickness decreases towards NF, especially in center region between IR and OR

asting

Seong-Mook Cho

<Plane 5: 7mm from OR>

Oil Volume Fraction at Plane 10-12

Surface Velocity Histories and Oil Entrainment luous sting 0.4 Consortium 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.25 P5 (right: non-clogged port) 0.5 P6 (left: clogged port) 0.20 × 0.6 Velocity magnitude (m/sec) 0.7 ~4 sec 0.8 22(AVG) ± 0.06 (STDE m/sec -0.1 -0.2 0.1 <Small entrainment at Plane 4 > 0.03(AVG) ± 0.01 (STDEV) m/sec 0.4 0.05 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Small 0.5 0.00 5 6 10 11 × 0.6 Time (sec) <Surface Velocity Histories and entrainment events> 0.7 Entrainment is induced by momentum accumulation (dependent on critical surface velocity and its 0.8 -7 sec duration) on oil layer. -0.2 Thus, large entrainment follows after small 0.2 0.1 -0 1 <Large entrainment at Plane 4 > entrainment. This trend is revealed from both the experiment and the LES coupled with VOF

LES coupled with VOF model results (oil/water interface motion, oil entrainment, critical surface velocity for entrainment), show good agreements with those of water model experiments

```
University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Seong-Mook Cho •27/30
```


Summary

- 3D-VOF LES model was applied to predict surface motion and entrainment in 1/3-scale oil/water model with clogged nozzle
- The model captures transient nozzle swirl and asymmetric mold flow between left/right NF and between IR/OR, by nozzle clogging.
- Transient asymmetric surface flows produce non-uniform oil layer thickness between left/right NF and IR/OR.
- Oil layer becomes thinner with higher surface flow.
- Abnormal fast surface flow towards SEN drags oil finger into water; then cuts off the entrained oil.
- Entrainment is induced by momentum accumulation (dependent on critical surface velocity and its duration) on oil layer: large entrainment follows after small entrainment. This trend is revealed from both the experiment and the LES coupled with VOF
- The predictions (oil/water interface motion, oil entrainment, critical surface velocity for entrainment), show good agreement with the water model experiments and indicate excellent potential of the LES model to predict slag/steel interface motion and slag entrainment in a mold of real caster.

- POSCO (Grant No. 4.0011721.01)
- Dae-Woo Yoon, POSTECH for help with the 1/3 scale water model experiments
- Ji-Joon Kim, Jong-Wan Kim, Yong-Hwan Kim, POSCO for discussion

0
0
tinue
Casting
Consortium

University of Illinois at Urbana-Champaign

inuous Casting

References

Metals Processing Simulation Lab

- 1. L. C. Hibbeler, R. Liu, and B. G. Thomas: Proc of the 7th European Continuous Casting Conference, Steel Institute VDEh, 2011
- 2. T. Teshima, M. Osame, K. Okimoto and Y. Nimura: Poceedings of 71 Steelmaking Conference, pp. 111–118, The Iron and Steel Society, 1988
- 3. H. Nakamura, S. Kohira, J. Kubota, T. Kondo, M. Suzuki, and Y. Shiratani: Steelmaking Conference Proceedings, pp. 409-415, The Iron and Steel Society, 1992
- 4. J. Kubota, K. Okimoto, A. Shirayama, and H. Murakami: Steelmaking Conference Proceedings, pp. 233-241, The Iron and Steel Society, 1991
- 5. N. Kasai and M. Iguchi: ISIJ Int., 2007, Vol. 47, pp. 982-987
- 6. D. Gupta and A.K. Lahiri: Ironmaking and Steelmaking, 1996, Vol. 23, No. 4, pp. 361–363
- 7. H. L. F. Von Helmholtz: Monatsberichte der Koniglichen, 1868, Vol. 23, pp. 215-228
- 8. W. Thomson: Philosophical Magazine, 1871, Vol. 42, pp. 362-377
- 9. T. Funada and D. D. Joseph: J. Fluid, 2001, Vol. 445, pp. 263-283
- 10. J. M. Harman and A.W. Cramb: 79 Steelmaking Conference Proceedings, The Iron and Steel Society, 1996, pp. 773-784
- 11. J. Yoshida, T. Ohmi, and M. Iguchi: ISIJ Int., 2005, Vol. 45, pp.1160-1164
- 12.Surface tension between water and acryl: http://www.accudynetest.com/polytable_01.html
- 13.Mohammad Ilyas KHAN and Mohamed Mahmoud NASEF: Leonardo Journal of Sciences, 2009, Issue 14, pp. 18-30
- 14. Derrick O. Njobuenwu: AU J.T. 2007, Vol. 10(3), pp. 163-168
- 15.Hershey, D. E., B. G. Thomas, and F. M. Najjar: International Journal for Numerical Methods in Fluids, 17:<u>1</u>, 23-47, 1993.

·29/30

Seong-Mook Cho